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I. INTRODUCTION

We preasent a constitutive model for porous, brittla rocks that includes
both compaction and fracture. The model is microphysical in that inelas-
ticity 1is direciiy related to the mechanics of crack growth and also to the
plastic collapse of spherical pores. The model is suitable for .omputing
and has been implemented in a two-dimensional etress wave code.

In previous papers (Margolin 1983a; Margolin and Adams 1982), w~ have
described the concept of the microphysical model and its essential
components. These references are written in the context of a constitutive
aodel for brittle materials, and so contain details of the generalized
Graffith theory that governs the growth of penny-shaped cracks.

These subjects are again briefly discussed, but the present paper
focuses primarily on new aspects of the modei. In particular, we descrite a
mechanical madel of pore collapse, the role of effective moduli in combining
the effects of the pores and the cracks in a consisteat fashion, and finally
add some remarks on the importance of self-consistent corrections to the

moduli in the calculation of spall.

II, MICROPHYSICAL MODELS

On a fine scale, a rock is not a continuum, but exhibits a variety of
microetructure. Further, the inelastic responae of solide can often be
associated with changes in the microstructure. For example, brittle
materials contain tiny embedded flaws. At certain levels of stress, these
flaws can begin to grow, a process that we see macroscopically as fracture,
and ultimately fragmentatic.. With this insi{ght, one might hope that a
constitutive model for brittle rocks would be based on fracture mechanics.
However, most currently utilizad constitutive models of inelastlic behavior
including fracture are macroscopic--1i.e., are based on plasticity theory and
ignore the microstructure.

Constitutive models that take account of microstructure are called
microphysical models. These models contain two levels of description of the
solid. On the la:ge scale the models sinulate an equivalent continuum. In
most models, this continuum is elastic. Howaver the effaective moduli
characterising the equivalent continuum vary with certain internal variables

that are calculated from the microstructure of the small rncale description.



On the smali scale, the models contain a statistical description of the
microstructure. Using mechanical models (for example, fracture mechanics if
the structural elements are cracks); the microstructure evolves in time.
Changes in the microstructure are driven by the macroscopic stress field.

Thus, these two levels of description are coupled interactively., The
internal varfables upon which the effective moduli depend are calculated
from the state of the microstructure. The effective moduli are used to
calculate the macroscopic stress field from the strain, which is determined
external to the constitutive law. Finally, the macroscopic stress is used
in the mechanical models to calci1late changes in the microstructure in the
snall mcale pic‘ture.

We emphasize that the microphysical approach does not require a
detailed mapping of the actual microstructure in any problem. Rather, the
microstructure is characterized statistically, and so represents a material
property that can be determinad in the laboratory. The microphysical model
should be used for problems where the scales of interest are nuch larger
than the intrinsic scalees of the microstructure so that the medium really
appears to respond as a continuum, and so that the statistics are "good".

The microphysical approach contains several advantages over other
nodels based on plasticity theory. To begin, the input parameters of the
microphyaical model are physical properties that can be directly measured.
Further, because the theory is based on physical parameters, it is capable
of scaling in length and time. “‘his 1is crucial because the strain-rate
effect is extremely important in dynamic processes (see, for example, Grady
and Kipp, 1979). T inally, the microphysical models are comparable to the
plasticity models ir terms of computational efficiency.

The particular model described in this paper is named PBCM (for
porous-brittle constitutive model), and is intended for materials that
exhibit both compaction and brittle failure., PBCM has been applied to rocks
such as unsaturated tuffs and sandstones.

PBCM conseiders two types of nmicrostructure--spherical pores and
penny-shaped cracks. In Section I1I, we describe a mechanical model for the
collapse of pores as a function of hydrostatic load, In Section IV, wa
review the generaliszed Griffith theory that determines when a crack may
begin to grow as a function of crack aise and orlentation in a general

stress fiaeld.



1I1. PORE COLLAPSE

Compaction is the inelastic (irreversible) loss of specific volume
during the passage of a compressive atress wave. Microscoplically, compac-
tion is associated with the plastic collapse of pores. In this section, wse
deacribe a mechsnical model for pore collapse, based mainly on the hollow
sphere model of Carroll and liolt (1971).

Carroll and Holt conaider spherical pores in an incompressibdle
elaatic-plastic material. They further assume that the syatem may be
represented as a hollow sphere whose inner rsadius is the pore radius, and
whose outer radius is chosen to mat:h tne material extsnaion ratio a. Here,
a is defined as the ratio of specific volume of the porous material to
specific volume of ‘h2 matrix material; a is a dimensionless number greater
than or equal to one.

Carroll and Holt provide an analytic solution relating the
time-dependent applied pressure on the outer boundary (with zero pressure on
the inner boundary) to the resulting tim. -dependent extension ratio. The
solution has three distinct branches in which the strain in the matrix
material may be totall; elastic, or partly elagtic and partly plastic, or
totally plastic. However, there is very little change of a in the first two
phases,

The analysis contains two important parameters which are the yleld
stress, Y, cf the matrix material, and a time scale that depends also on the
yield stress as well as density, initial extension ratio, and initisl pore
radfus. The result of the analysis fe a second-order differential equation
for o as & function of time.

PBCM was initially writtan to integrate this dynamic equation for a,
However; in moa*t caseas of interest, the intrinsic time scale associated with
pore collanse is much smaller than dynamic time scales assoclated with the
etreses wava. In such cases the inartial tere in the pore collapse equation
mcy be neglected, leaving the equilibrium relation

p<§v1n (%) (1)

This equation governs the pore collapse. The "leis-than-or-equal-to" asign

means that a is « noaincreasing function of time,.



In general, one might conaider the effect of allowing a spectrm of
pore sizes as would be found in the in situ rock. However, in the quasis-
tatic case, the pore size does not appear in Eq. 1, and so 1% is sufficient

to consider the avarage initial pore radius.

IV. FRACTURE

Much work has been done on the theory of frecture, most of which builds
on the original ideas of Griffith (1920). The measured failure strengta of
brittle materfials is often two orders of magnitude smaller than theoretical
estinmates based on breaking atomic bonds. Griffith postulated the existence
of tiny flaws in brittle materials. The flaw tips act as streas con-
centratora, amplifying the external stresses to the point where the flaws
begin to grow. Furthermore, a statistical distribution of fiaw density as a
function of size and orientation i3 a marerial property that can be deter-
mined directly by section and counting (Seaman, 1976).

Each microscopic fiaw i3 really a tiny crack. It is scrucial then to
understand the conditions under which a crack may grow. Griffith”s theory
is based on the idaa that the stability of the crack can be determined from
general thermodynamic considerations. Griffith applied his analysis to
two-dimensional slits in normal tension. The analysis has been ger~ralized
to three-dimensional panny-shaped cracks in spatially uniform, but otherwise
arbitrary stress fields (Margolin, 1984).

Fur a crack in the x-y plane, the condition for growth is

ol + (Z-v) (oxz + oyz) > ;;I:;;;: (2)

if o _ 1s tensile (positive) and

2 2 2 __T"E___ 3
(Z-V) (Ux' ¥ Uy.) ’ Z(I-vz)c )

if LA is compressive. Here c ia the crack radius, v is Poissor”s ratio,
E is Young”e modulus, and T is the coefficient of surface tension. These
equations show that smaller cracks are more stabla, and that the effect of
shear stress is to decrease the critical crack sixe for growti.

Unlike the situation with pores, {t is alvays famportant to allow a
spectrum of initial crack radii. This spectrum, coupled with the



asymptotic limit on the speed of crack propagation, is the source of both
size and strain-rate effecta that characterize real geclogic materisls. The
exact description nf the evolution of a crack distribution with loading is a
difficult problea, and many compromises amust be made with the theory to
render the model computable. PBCM uses a two-parameter analytic form to
represent the crack distribution as it evolves. Detailc can be fouand in
Demuth, et al. (1984).

V. EFFECTIVE MODULI

The presence of cracks and pores alters the elastic response of the
material. The effective modull represent the elastic properties of an
equivalent continuous medium. Effective elastic moduli are gubstantially
different from the tangent modull. Tangent moduli are calculated from the
slope of a stress-strain curve during inelszstic deformation, and so depend
critically oa the history of loading. By contrast, the effective elastic
moduyli depend only ocn the instantanenus state of the microstructure.

The effective elastic moduli are found from static solutions of the
displacement field for a body with a (statistically) prescribed microstruc-
ture, and subject to a macroscopically uniform stress field. To l-vest
order, the total strain of the body is the sum of the elastic strain of the
matyix material plus the extra strain due to opening and shearing of the
cracks and pores, ‘l1he elastic strain of the matrix is simply related to
the stress 1f the mairix is assumed to be linear elastic. The response of a
single crack or pore to uniform atress 1s found fiom detailed sclutions in
Sreddon (1969) and Mackenzie (1950).

To derive the total effect of the microstructure, one must then sum up
the effects of the individual cracks and pores over the entire
microstructure, This summing process leads to several dimensionless numbers
which we tarm internal variables. These internal variables form the connec-
tion between the microscopic and macroscopic luvels of the constitutive
model,

One of these internal variables is the extension ratio, a. The other
variable, vy, represents the third moment of the crack density distribution,
For example for a simple material containing only cracks bedded parallel to
the x-y plane, the effective compliance C"" is related to the compliance

of the matrix waterial C: . by (Mergolin, 1983b).

re



czzzz - c:zzz (1 +'l§ - vhy) . (4)

This equation shows that the cracked material is softer than the uncracked
material. For sore general crack distributions, y becomes a two-index
tensor.

The eesence of the effective moduli is that they enable us to write
stress as a function of strain plus the internal variables. The constitu-
tive law is exactly integrable in time--i.e., is an equation of state--and
depends on the hiatory only through the internal variables.

Furth-rmore, all inelasticity in our model results from the evolution

of the microstructure. In rate form, the constitutive law has the form

de
1y d
ar " @t i) (5)

Inverting for the stress rate

do de dc
kl - -1 1) - 1jmn
ac - (¢ )klij (5% = %m I (6)

Thus, the constitutive relation hag the form of a viscoelastic solid, and
th- relaxation time is determined by the rate of ~hange of the internal
variables.

The effective modull described abovs are Jderived for bcdies whose pores
and cracks are relatively far apart. To be precise, in the derivation of

the effective modull, we have assumed

y << 1 1 (a=1) <<1 7

For larger values of these internal variables, self-consistent field ccrrec-
tions must be applied to the m: duli (Hoenig, 1979).

The effect of the gelf-consistent corrections 1is to predict softer
elastic reeponse for large values of (a - 1) and much more rapid softening
of cthe material during crack growth., The latter is important in calcula-
tions involving raepid fracture to correctly describe localization effects.

A particular example is tiisa spall calculation of the last section.



V. IMPLEMENTATION

PBCM has been implemented in the computer program SHALE (Demuth, et al.
1984), SHALE ia a finite differenceé code that integrates the equations
representing conservation of mass, momentum, and energy in a continumm. The
conservation laws must be supplemented by a constitutive law, a ther-
modynamic relation between the deformation of the medium and the restoring
forces (that is, the stress field). The conservation equations and the
constitutive equation form a complete set which, with appropriate boundary
and initial conditions, describe the behavior of the continuum.

SHALE is baeced on a time marching procedure, Given the values of all
the field variables at any time, SHALE approximately integrates the equa-
tions over a small increment of time to find the field variables at the
later time. The increment of time is called the time step, and integration
of the equations over a time step is termcd a computational cycle.

In the first step of the computational cycle, strain rates are calcu-
lated from the spatial gradients of material velocity. Next, PBCM is called
to update the stress tensor. With the time-advanced stresses, accelerations
and the new materfal velocity field can be calculated. Finally. with the
nev velocities, time-advanced positions, densities, and internal energies
can be computed.

Within PBCM, the internal variables associated with compaction and
fracture must be updated. A brittle material contalns cracks with a variety
of sizes and orientations. PBCH assumes that the competent rock contains a
distribution of cracks as a function of size., Angular varfiations are
re;resented by discrete bins. Initially, the distribution is a material
property. As the material i3 loaded, the distribution evolves using the
generalized Griffith criteria [Eq. (2) and (3)] to determine which cracks
may grow. The actual distribution becomes quite complicated; however, PBCM
approximates the true distribution with a simple two-parameter fit. Details
may be found in Demuth, et al. (1984).

One must be careful in treating the cracks to recognize that the effec-
tive woduli are discontinuous between normal tension and compression. This
reflects the physical situation that, in normal tenaion, cracke open propor-
tionately to tue stress. However, in normal compresaion, cracks can do no

more than close.



Under most circumstances, crack growth is an unstab.e process. That
fe, stress relaxation asscclated with grovwth is more than offset by the
lower scress levels required to propagate bigger cracks. This means we can
calculate crack growth explicitly--independent of the final stress state.

The situation is mcre complicated during pore closure. As a nearly
equilibrium process, the final pressure and extension ratio must be related
by Eq. (1) during compaction. The first step in updating a is to calculate
the nev pressure elastically, allowing no compaction. Then one checks
whether this elastic estimate exceeds the critical pressure given in Eq. (1)
based on the current value of a. If it does not exceed the critical value,
no compaction occurs and the elastic calculation applies. Otherwise, one

must simultaneously solve Eq. (1) along with the equation

p= K&, (8)
Here, l(e is the effective bulk modulus which depends on a.

Equation (1) represents the allowable pairs (p,a) based on the
Carroll-Holt model of potre collapse. Equation (7) describes the partition
of strain between matrix material and pores. Regarding the dilatation €4
as known, these two equations can be solved simul taneously for the updated
pressure p and the extension ratio a.

One more important detail concerns the measure of strain. Most stress

wave codes identify the strain with the aymmetrized velocity gradients

deil . 3

“dt

L_S’

u
(5 +

5% ) (9)
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o
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However, the effective modull are defined as elastic moduli of the material
at a given state of the microstructure. 1If the microstructure changes
during a computational cycle, the appropriate strain rate must properly
reflect changes in the reference (unloaded) state of the material. This is
particularly important during compaction when most of tha apparent volume
2hange is associated with compaction, and hence, with permaaent change in
reference state. Instead of Eq. (8), the appropriate strain rate for PBCM
is



f_i..l-l(al .,.fl)-_l_it&; (10)
dt 2 bxj bxi a dt 1]

where a, is the extension ratio of the referance state.

SHALE with PBCM has been applied to the problem of calculating ground
motion from a deeply buried nuclear explosion. The problem starts with
detonation of a nuclear explosive, sending strong stress waves through the
ground. The aim of the calculation 1s to predict time histories of velocity
and acceleration at the surface,

The phenomena that SHALE must represent are complex. Close to the
detonation point, energy mainly in the form of radiation couples into the
ground producing a region of melted and vaporized rock. These processes
generate a strong compressive stress wave which propagates away from the
detonation point. Outside the melted region, the wave propagates inelasti-
cally for a wvhile and, after sufficient attenuation, elastically. The
inelasticity is assoclated with compaction. 1Inelasticity and spherical
divergence cause the wave to disperse and attenuate.

The compressive wave reflects from the surface as a tensile wave.
Rapid, localized fracture accompanies the first appearance of tension,
approximately one-half wavelength of the pulse below the ground. The frac-
tures in this region coalesce, and completely separate the spall layer from
‘inderlying <ock. The spall layer is thrown up and then falls only under the
influence of gravity. Finally, it hits the uaderlying rock and bounces.

The figure shows the surface vertical velocity history of a par-
ticularly simple test problem chosen *o isolate these physical processes. A
quasi-one-dimeusional stack of cells was initialized with overburden stress,
and a Gaussian stress pulse with a width of 10 msec was imposed at the
botton boundary (300 m) at zero time. This pulse shape is a realistic
approximation to the loading from an underground explosion. The pulse
reflects from the surface, causing an upward acceleration, and the reflected
teneile puise causes spall at depth. The strong rebound from peak velocity
lasts while cracks grow and ~ause the formation of a new free surface at the
spall gap. The velocity curve turns Iinto a straight slope as the spall
layer decreases velocity during its free fall period under the influence of
grarity, then returns to zero velocity in a series of bounces.

In summary, we have implemented a fracture and failure model based on

the correct microphysical basis for fracture, and reproduced the correct set



10

of spall, free fall, and slapdown phencmena without numerical art’fices or
ad hoc modifications to our code, Furthermore, the correct scaling and

strain rate dependences are built into our model.
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Figure: Surface velocity history in SHALE/BCM test calculation.



